Government General Degree College Chapra Department of Mathematics PO and CO (NEP)

Fourth Semester

Programme Outcome:

1. Acquire a comprehensive understanding of fundamental mathematical principles, including algebra, calculus, differential equations, vector spaces, and abstract structures such as groups, rings, and fields.

2. Apply logical reasoning and mathematical techniques to analyze and solve both theoretical and real-life problems involving pure and applied mathematics.

3. Demonstrate proficiency in mathematical modeling and problem-solving using differential equations, calculus and linear systems to address problems in science, engineering, and economics.

4. Utilize modern abstract structures such as groups, rings, fields, and vector spaces to explore symmetry, structure, and transformations, with applications in cryptography, coding theory, and automorphisms.

5. Interpret results through graphical and numerical approaches, using plotting and visualization techniques to study the behavior of solutions of differential equations.

6. Demonstrate the ability to communicate mathematical ideas clearly and effectively, both in written and verbal form, and construct sound logical proofs across diverse topics.

10. Foster a research-oriented mindset and prepare for higher studies in mathematics or related interdisciplinary fields by cultivating critical thinking and a strong theoretical base.

11. Appreciate the historical development and societal relevance of mathematics, understanding its evolution and utility in the digital age.

12. Uphold ethical practices and responsibility in the application of mathematics, ensuring accuracy, integrity, and respect for the broader impacts of mathematical work.

Course Outcome:

Course Course code & title	Syllabus	Course Outcome
MATH-M-T-04:	Unit 1. [15L]	After successfully completing
Differential Equations	Differential equations and mathematical models.	this course, the student will be able to:
	General, particular, explicit, implicit and singular solutions of a differential equation.	CO1 : Understand and classify different types of differential
	Separable equations and equations reducible to this form.	equations (ordinary and partial), including general, particular, explicit, implicit, and singular solutions. CO2 : Solve first-order differential equations using
	Exact differential equations and integrating factors.	
	Linear equation and Bernoulli equations, special integrating factors and transformations.	
	First order and higher degree differential equations, solvable for x, y and p, Clairaut's Equations: general and singular solutions.	various standard methods such as separation of variables, integrating factors, and transformations (including linear and Bernoulli equations).
	Unit 2. [15L]	
	Lipschitz condition and Picard's Theorem (Statement only).	CO3 : Apply analytical techniques like Picard's theorem and
	General solution of homogeneous equation of second order, principle of superposition.	Lipschitz condition (conceptually) to study existence and uniqueness of solutions.
	Wronskian: its properties and applications, linear homogeneous and non-homogeneous equations of higher order with constant coefficients.	CO4 : Solve second and higher- order linear differential equations using methods such as
	Euler's equation, method of undetermined coefficients.	undetermined coefficients, variation of parameters, Euler's
	Method of variation of parameters.	equations, and Wronskian-based analysis.
	Unit 3. [15L] Systems of linear differential equations.	CO5 : Analyze and solve systems of linear differential equations using operator methods and
	Types of linear systems.,	normal form techniques, and
	Differential operators.	understand the structure of
	An operator method for linear systems with constant coefficients.	solutions for homogeneous linear systems.
	Basic Theory of linear systems in normal form.	CO6 : Interpret equilibrium points and phase planes, and
	Homogeneous linear systems with constant coefficients, two Equations in two unknown functions.	understand qualitative behavior of differential equations through graphical methods.
	Unit 4. [10L] Equilibrium points.	CO7 : Solve differential equations using power series about

	Interpretation of the phase	ordinary and regular singular
	plane.	points.
	Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 5. [15L] Partial differential equations – Basic concepts and definitions. Mathematical problems.	CO8 : Understand the fundamentals of partial differential equations and solve.
	First order equations: classification, construction and geometrical interpretation, Lagrange's method, Charpit's method.	
	Method of characteristics for obtaining general solution of quasi linear equations.	
	Canonical forms of first-order linear equations.	
	Method of separation of variables for solving first order partial differential equations.	
	 Graphical demonstration (Teaching aid) [5L] Plotting a family of curves which are solutions of second order differential equations. 	
	2. Plotting a family of curves which are solutions of third order differential equations.	
MATH-M-T-05: Algebra-II	Unit 1. [20L] Properties of cosets.	After successfully completing this course, the student will be
231gc/01 a-11	Lagrange's theorem and consequences including Fermat's little theorem.	able to:
	External direct product of a finite number of groups. Center of a group, centralizer,	CO1 : Understand and apply fundamental group theory concepts such as cosets, Lagrange's theorem, Fermat's
	normalizer.	little theorem, normal subgroups, factor groups, and
	Normal subgroups. Factor groups.	group homomorphisms.
	Cauchy's theorem for finite abelian groups.	CO2 : Analyze structural properties of groups including center, centralizer, normalizer, automorphisms, characteristic
	Group homomorphisms, basic properties of homomorphisms.	subgroups, and commutator subgroups.
	Cayley's theorem.	

Properties of	CO3: Demonstrate
-	understanding of isomorphism
isomorphisms. First, second and	theorems and apply them in
third isomorphism theorems.	
Automorphism, inner	group-theoretic contexts; verify
automorphism, automorphism groups,	Cayley's theorem and examine
automorphism groups of finite and	automorphism groups of cyclic
infinite cyclic groups, applications of	groups.
factor groups to automorphism groups.	
Characteristic subgroups,	CO4: Explore internal and
Commutator subgroups and its	external direct products, and
properties.	apply the fundamental theorem
Unit 2. [10L] Properties of external direct	of finite abelian groups and
products, the group of units modulo n	Sylow's theorems to classify
as an external direct product, internal	finite groups.
direct products.	
Fundamental theorem of finite	CO5 : Understand the definition
abelian groups.	and properties of rings, subrings,
	integral domains, fields, and
Sylow's theorems and	identify different types of ideals
consequences.	(prime, maximal); apply
Cauchy's theorem, Simplicity	isomorphism theorems in ring
of A_n for $n \ge 5$, non-simplicity tests.	theory.
Unit 3. [15L]	
Definition and examples of	CO6 : Gain conceptual clarity in
rings. Properties of rings,	vector spaces, linear
	dependence and independence,
Subrings.	subspaces, basis, dimension, and
Integral domains and fields.	apply theorems like the
Characteristics of a ring.	replacement, extension, and
Ideal, ideal generated by a	deletion theorems.
subset of a ring.	
Factor rings.	CO7 : Understand row space,
Operations on ideals.	column space, and apply Gram-
_	Schmidt orthogonalization in
Prime and maximal ideals.	Euclidean spaces.
Ring homomorphisms,	
properties of ring homomorphisms.	CO8 : Comprehend and work
Isomorphism theorems I, II	with linear transformations,
and III.	their matrix representations,
	and analyze null space, range,
Unit 4: [15L]	rank, and nullity.
Concept of Vector space over	
a field: Examples, concepts of Linear	CO9 : Find eigenvalues,
combinations, linear dependence and independence of a finite number of	eigenvectors, and characteristic
vectors.	polynomials; apply the Cayley-
	Hamilton theorem and perform
Sub- space, concepts of	matrix diagonalization and
generators and basis of a finite dimensional vector space.	canonical form transformations.
emicisional vector space.	

	Replacement theorem. Extension theorem. Deletion theorem and their applications.	
	Row space, column space.	
	Euclidean Spaces. Orthogonal and orthonormal vectors. Gram- Schmidt process of orthogonalization	
	Unit 5. [15L] Linear transformations. Null space. Range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations.	
	Eigenvalues, eigen vectors and characteristic equation of a matrix. Matric polynomials, Cayley-Hamilton theorem and its use in finding the inverse of a matrix.	
	Diagonalization, Canonical	
	forms.	
	Real-valued functions defined on an	After completing this course
MATH-MI-T-02 Calculus &	interval, limit and Continuity of a	After completing this course, students will be able to:
Differential Equations	function (using ε -). Algebra of limits.	students will be able to.
-	Differentiability of a function.	CO1: Understand the concept of
	Successive derivative: Leibnitz's theorem and its application	limit, continuity, and
	to problems of type $e^{ax+b}sinx$, $e^{ax+b}cosx$,	differentiability of real-valued functions using the ε-δ
	(ax+b)inx, (ax+b) ⁿ cosx.	definition.
	Partial derivatives. Euler's	
	theorem on homogeneous function of two and three variables.	CO2 : Compute successive
	Curvature, rectilinear	derivatives using Leibnitz's theorem and solve related
	asymptotes.	problems involving exponential
	Indeterminate Forms:	and trigonometric functions.
	L'Hospital's Rule (Statement and Problems only).	
	• •	CO3 : Evaluate partial derivatives and apply Euler's theorem for
	Statement of Rolle's Theorem and its geometrical interpretation.	homogeneous functions in two
	Mean value theorems of Lagrange and	and three variables.
	Cauchy. Statements of Taylor's and Maclaurin's theorems with Lagrange's	
	and Cauchy's forms of remainders.	CO4 : Apply L'Hospital's Rule to solve indeterminate forms and
	Taylor's and Maclaurin's infinite series of functions like e^x , sinx, cosx, $(1+x)^n$,	find curvature and rectilinear
	log(1+x) with restrictions wherever necessary.	asymptotes.
	Application of the principle of	CO5: State and interpret Rolle's,
	maxima and minima for a function of a	Lagrange's, and Cauchy's Mean
	single variable. Unit 2. [5L]	Value Theorems geometrically and algebraically.
L	- · -· []	and digeoratedity.

Reduction formulae, derivations and illustrations of reduction formulae of the typeCO6: Use Taylor's and Maclaurin's Theorems (with remainder forms) to expand functions and analyze convergence.∫sinnx dx, ∫cosnxdx, ∫tannxdx, ∫secnxdx, ∫(logx)ndx, ∫sinnxcosmxdx.CO7: Apply differential calculus to identify maxima and minima of single-variable functions.Unit 3. [20L] First order equations: (i) Exact equations (ii) Euler's and Bernoulli's equations: (ii) Clairaut's Equations: General and Singular solutions.CO7: Apply differential calculus to identify maxima and minima of single-variable functions.Second order differential equations: (i) Method of variation of parameters, (ii) Method of undetermined coefficients.CO9: Solve first-order and second-order differential equations with constant coefficients, method of variation of parameters, simultaneous differential equations.		
CO10 : Analyze linear differential equations with constant coefficients and apply methods of undetermined coefficients and simultaneous equations.	reduction formulae of the type $\int sinnx dx$, $\int cosnxdx$, $\int tannxdx$, $\int secnxdx$, $\int (\log x)ndx$, $\int sinnxcosmxdx$. Unit 3. [20L] First order equations: (i) Exact equations and those reducible to such equations. (ii) Euler's and Bernoulli's equations (Linear). (iii) Clairaut's Equations: General and Singular solutions. Second order differential equation: (i) Method of variation of parameters, (ii) Method of undetermined coefficients. Linear homogeneous equations with constant coefficients, method of variation of parameters,	Maclaurin's Theorems (with remainder forms) to expand functions and analyze convergence. CO7 : Apply differential calculus to identify maxima and minima of single-variable functions. CO8 : Derive and apply reduction formulas for trigonometric and logarithmic integrals. CO9 : Solve first-order and second-order differential equations using exact, Bernoulli's, Clairaut's methods, and the method of variation of parameters. CO10 : Analyze linear differential equations with constant coefficients and apply methods of undetermined coefficients